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With great delight, I extend my warmest greetings to all members of our
esteemed institution as we present the latest edition of our Mathematics
Magazine. Witnessing the dedication and enthusiasm of our students and
faculty in curating this publication fills me with immense pride.

Mathematics is more than just a subject; it is a universal language that reveals
the mysteries of the universe and equips us with problem-solving skills that
transcend academic boundaries. In this edition, you will discover a diverse
range of articles, problems, and insights that highlight the multifaceted nature
of mathematics and its applications across various fields.

I extend my heartfelt gratitude to the editorial team, comprised of both students
and faculty members, for their tireless efforts in bringing this magazine to life.
Their unwavering commitment to promoting mathematical knowledge and
fostering a love for the subject within our community is truly commendable.

May this magazine serve as a source of inspiration, igniting curiosity and a
passion for the endless possibilities within the realm of mathematics. I hope it
not only deepens our understanding of the subject but also strengthens the
bonds among us, fostering a sense of camaraderie.

Let us celebrate the achievements of our students and faculty, and continue to
nurture a culture of learning and excellence in our institution. Thank you for
your continued support, and I look forward to witnessing the ongoing growth and
success of our mathematics community.

Principal's Message 
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It is with immense pleasure that I extend a warm welcome to all of you to the vibrant realm of our
College Mathematics Magazine. As the Head of the Mathematics Department, I am thrilled to witness
the launch of this remarkable initiative that celebrates the beauty, diversity, and intellectual richness
of the mathematical world.

Our College Mathematics Magazine is not just a publication; it is a testament to the passion, curiosity,
and brilliance that define our mathematics community. Mathematics, as we know, is not merely a
subject but a universal language that unveils the secrets of the universe. Through this magazine, we
aim to cultivate a deeper appreciation for the elegance and transformative power that mathematics
brings to our lives.

Within these pages, you will find a diverse collection of articles, features, and insights that highlight
the extraordinary achievements of our students and faculty. This magazine serves as a platform to
showcase the exceptional talent and creativity that thrive within our department.

I encourage each of you—whether a seasoned mathematician or someone just embarking on their
mathematical journey—to actively engage with the content. This magazine is designed as a space for
everyone to learn, explore, and be inspired by the boundless possibilities of mathematics.

I would like to extend my heartfelt gratitude to the dedicated team of students and faculty members
whose hard work and enthusiasm have brought this publication to life. Your unwavering commitment
to excellence is evident on every page, and I am confident that this magazine will be a source of pride
and inspiration for our mathematics community.

As we embark on this exciting journey together, let us celebrate the beauty of mathematics and the
intellectual curiosity that drives us to explore its infinite depths. May this magazine be a source of
inspiration, motivation, and a shining example of the enduring spirit of the Mathematics Department
at Maulana Azad College.

Wishing you all a fantastic experience as you delve into the pages of our inaugural Mathematics
Magazine!

Message from the Head of the Department
Dr. Somnath Bandyopadhyay, Maulana

Azad College, Kolkata
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Dear Readers,

It is with great pleasure and enthusiasm that we welcome you to the latest issue of Mathematics
Magazine. As we embark on this mathematical journey together, we are reminded of the profound
beauty and significance that mathematics holds in our lives.

In this edition, we have curated a diverse collection of articles that traverse the expansive
landscape of mathematics. From Algebra, Number Theory, and Real Analysis in pure mathematics
to Mathematical Biology and Applied Physics, these contributions reflect the richness of the field.
Our contributors—ranging from current and former students to esteemed members of our faculty
—have crafted insightful pieces that we are confident will engage, inspire, and perhaps challenge
your understanding of the mathematical universe.

Beyond the articles, this issue highlights various programs and extracurricular activities organized
by the department. These initiatives showcase not only the depth of mathematical knowledge but
also its profound impact on the world around us.

We extend our sincere gratitude to all contributors for sharing their expertise and passion for
mathematics, and to our dedicated editorial team for their tireless efforts in bringing this issue to
life.

We hope that Mathematics Magazine continues to serve as a source of intellectual stimulation and
a catalyst for fostering a deeper appreciation of the mathematical sciences.

Happy reading!

DR. NANDA DAS DR.BABLI SAHA
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Dear Readers,

Welcome to this edition of our college Mathematics Magazine! As we dive into
the vast ocean of mathematical wonders, we are reminded of the elegance,
precision, and sheer beauty that mathematics offers. Often regarded as the
most fundamental of all disciplines, mathematics serves as the backbone for
subjects ranging from Physics and Chemistry to social sciences like
Economics and modern fields such as Computing and Data Science.

In this issue, we embark on a journey beyond mere numbers, delving into the
depths of mathematical concepts that not only shape our understanding of
the world but also spark our imagination. This magazine is the result of the
relentless effort and dedication of the students from the Mathematics
Department, who have been skillfully guided and supported by our esteemed
professors.

Our goal through this publication is to demonstrate that mathematics is far
more than an abstract concept confined to textbooks and classrooms; it is a
dynamic and powerful tool with countless real-world applications.

We, the student editors of MATHZIN, extend our heartfelt gratitude to all the
students and professors of our department for their invaluable contributions.
We hope you find this edition filled with fascinating insights and amazing
facts. May the beauty of mathematics continue to inspire and captivate us all!

Best regards,
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The History and Development of Zero
By Masud Rana

Zero’s progress can be traced biologically across different cultures and epochs for a
verylong time and in fact, it’s one of the major pillars of modern mathematics.
Uponestablishing where zero came from, one can effectively appreciate the manner
in whichhumanity’s understanding and embrace of mathematics changed
ideologically.

Early Representations and Placeholders
The history of zero and its early representation and the symbols associated with
it areamong the key turning points in the history of mathematics and the
numeral systems asthis shows the nature of the evolution of human
understanding concerning numbersand the very important feature of some
number systems, which is zero.

Babylonian Placeholder

About 300 B.C.E. a group of Babylonians existed that worked on a base 60
numbersystem and for that matter, during their time, they had problems
differentiating “two”from “120” or “three thousand six hundred”. Hence, they
came up with the idea of adumb form marker which was an angled wedge. Even
though this idea did help clarifynumerical representation, when it came to
numbers, zero was never regarded as anumber. Instead, it was a role that served as
an indication of position.
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Meanwhile, on the other side of the world, the Mayan civilization that resided in middle
America independently constructed an advanced base number 20 system. In the fourth
century A.D, they created a new symbol in shape of a shell that represented zero,primarily
within their calendrical computations. This symbol enabled the Mayans toper form complex
astronomical and chronological calculations, highlighting an advanced understanding of
zero as a placeholder. However, similar to the Babylonian usage, it did not extend to a
broader numerical or philosophical context.
Greek Hesitancy

Ancient Greek philosophers and mathematicians did not readily accept the use of the
number zero. Their numerical system did not include a symbol for zero and the idea of
nothing’ was philosophically difficult. Such delays were due to metaphysical considerations
regarding the issues of void, being and how these should be viewed which then made it
difficult for Greeks to understand the concept of zero in mathematics.

The Indian Subcontinent: The Birthplace of Zero as a number

The Indian sub-continent on the other hand came to view and use zero as a number. The
advancement towards this shows the consistence and development in history of
arithmetic and mathematics, which in turn helped modify the other civilizations that
came to borrow from their numerals and scientific concepts.

Early Notation and Symbols

About 300 B.C.E. a group of Babylonians existed that worked on a base 60 number
system and for that matter, during their time, they had problems differentiating
“two”from “120” or “three thousand six hundred”. Hence, they came up with the idea of
adumb form marker which was an angled wedge. Even though this idea did help clarify
numerical representation, when it came to numbers, zero was never regarded as
anumber. Instead, it was a role that served as an indication of position.

Brahmagupta's Development

Important advancements in the
mathematicians' works emerged in context of
Brahmagupta's life when zero began to be
referred to as a number by the mathematician.
Brahmagupta’s belief concerning the usage of
zero can be found in hisbook Brahmasphuṭa
siddhānta where he laid down the rules of
arithmetic including zero, addition and
subtraction.

Mayan Civilization
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Epigraphic Evidence

The Gwalior’s Chaturbhuj Temple, India records one of the earliest known
uses of the numeral of zero through an inscription that has been dated to be
in the year 876 CE.This inscription bears witness to the use of zero in the built
environment reinforcing its use in everyday life and administration.

Transmission to the Islamic World and Europe

The very first transmission of mathematical knowledge in ties, especially the
idea of ‘zero’ from the Islamic sphere to the European one was very essential
in the evolution of  Western mathematics and science.

Transmission to Europe

The conduit through which this knowledge was transferred to the
western portion of the world consisted mostly of many translations
of Arabic mathematical works done in the medieval times. In
particular, Europeans particularly in the twelfth century translated
several significant Arabic works into their language. Al-Khwarizmi,
Al-Khwarizmi Messier treatises were among these and his name even
gave rise to the term“algorithm” pointing out his influence on
mathematical processes.
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Islamic Scholarship and the Adoption of Zero

After its very basic invention in India, which
dates back to around the 5th century BC, zero
was further refined by Islamic scholars as late
as the eighth and ninth centuries.The Persian
mathematician Muhammad ibn Musa al-
Khwarizmi, celebrated as the father of algebra,
introduced the concept of zero to the Islamic
world in his seminal work Kitabal-Jabr wa’l-
Muqabala.

In the House of Wisdom in Baghdad, Al-Kwharizmi developed an Arabic
numeric system with the number zero, called in Arabic ‘sift’. Not only did this
text help to build the foundations of Algebra, it contributed to the wider
acceptance of zero too as one of the most important numbers in use today.

Fibonacci and the spread of zero worldwide

Next on our historical journey is Fibonacci, also known as Leonardo of Pisa, who
carried the torch of ‘0’ and the Hindu-Arabic decimal system of Al-Kwarizmi, and
brought it toEurope. Fibonacci learnt about ‘0’ and decimal mathematics from Arab
traders he met while accompanying his father on merchant tours in Tunisia. He
immediately realised the superiority of the decimal system compared to previously
used Roman numbers.This new type of mathematics spread to the rest of Europe
through his book, Liber Abaci (Book of Calculation), published in 1202.
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Relation of Aryabhata with Zero

Though Aryabhata didn’t denote zero by a symbol, the implication became
clear in his work. His place-value system not only required a placeholder to
denote an absent (zero)digit at a particular place but also indirectly explained
how meaningless other digits would become without it. Zero was also
introduced as a part of recipes necessary to solve quadratic and other
indeterminate equations.However, formal definition and integration of zero in
number systems can be credited to Indian mathematicians who lived after
Aryabhata, particularly Brahmagupta (7thcentury), who explicitly denoted
zero by a dot or small circle (another invention ofancient Indians) sometime
around 650 A.D., as well as defined rules for arithmetic operations with zero.
So while Aryabhata might’ve explained the philosophy behind use of null
quantities, itwas the works of later Indian mathematicians which presented
zero in its full glory and laid down the laws involving null quantities.
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Philosophical and Cultural
Implications

The invention of zero was as much a mathematical as it
was a cultural and philosophical advancement. In many
cultures, the concept of ‘nothingness’ held deep
metaphysical import. Thus in ancient Greece, where
debates raged about the physical reality of a void and
the nature of existence, records indicate that the
Greeks struggled with adopting zero as a number. In
contrast, Indian philosophy with its elaborate concepts
of ‘shunya’ or emptiness probably facilitated an easier
acceptance of zero.

Conclusion

The development of zero was a transformative
journey that reshaped mathematics and laid the
ground work for modern science and technology.
From its early use as a placeholder in ancient numeral
systems to its recognition as an independent number
in India, and its subsequent transmission to the rest
of the world, zero's history underscores the dynamic
interplay between mathematical innovation and
cultural context.
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The Future of Mathematics 
2024-2025
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As computational power increases, the ability to model complex, real-
world systems— from climate change to financial markets—will continue
to expand. Mathematical models will be crucial in understanding and
predicting phenomena such as pandemics, natural disasters, and
economic crises. These models could become more sophisticated through
the integration of artificial intelligence (AI) and machine learning. 

MATHEMATICAL MODELING
FOR COMPLEX SYSTEM
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Advances In Pure
Mathematics 

While applied mathematics
may be more visible in the
future, pure mathematics
will continue to evolve as
well. Fields like Number
theory, algebra, topology,
and geometry will explore
deeper and more abstract
concepts. The Future of pure
mathematics will likely
involves:

Abstract Mathematics: Despite its practical
applications, pure mathematics —focused on
understanding abstract concepts such as number
theory, algebraic geometry, and differential topology
—will continue to evolve. New branches of abstract,
like homotopy type theory or noncommutative
geometry, may lead to the discovery of
mathematical structures with unforeseen
applications. 

14



Applied Mathematics is the
branch of Mathematics
focused on using
mathematical techniques and
models to solve real-world
problems across various
fields, such as science,
engineering, economics, and
technology. Unlike pure
mathematics, which deals
with abstract concepts,
applied mathematics aims to
provide practical solutions to
complex system and
processes.

1.Mathematical Modeling: Creating Mathematical representation of real-
world phenomenon to predict and analyze their behavior. 

2. Numerical Analysis: Developing algorithms for solving complex
mathematical problems through approximation methods. 

3. Mathematical Finace: Using mathematics models to understand.
and predict financial markets, optimize portfolios, and manage risk.

4. Differential Equation: Modeling dynamic system and understanding
how quantities change over time or space, used in physics, biology, and
engineering. 
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Applied Mathematics focuses on practical problem-
solving and real-world applications. It uses mathematical
techniques to address challenges in fields like
engineering, physics, economics, and computer science.
Its goal is often to create models, simulations, or
algorithms that provide solutions to specific problems.
Pure Mathematics is more abstract and theoretical. It
emphasizes exploring mathematical concepts,
structures, and theories for their intrinsic value, without
immediate concern for practical applications. Topics
include number theory, algebra, topology, and analysis.

Your paragraph text
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As computational tools continue to evolve, mathematics
will increasingly focus on computational techniques and
algorithm design,. The Future of Mathematics education
and research will require students to master not only
abstract theories but also computational methods that can
handle real world data. This includes: 

i) Numerical Methods
ii) simulation and modeling techniques 
iii) Optimization algorithm 
iv) Machine Learning
v)Software tools like Matlab, python and
Mathematica

 In essence, the computational aspect of Mathematics will
become as central as theoretical work, merging the two point a
more practical, applied discipline. 
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Mathematics offers a vast range of career
opportunities due to its critical role in problem-
solving, analysis, and logical reasoning. Some key
possibilities include:

1. Academia and Research: Teaching at schools, colleges,
or universities and conducting research in pure or
applied mathematics.

Data Science and Analytics: Analyzing large datasets to
inform decisions in business, healthcare, and
technology.

Actuarial Science: Assessing risk for insurance
companies, banks, or investment firms.

Engineering and Technology: Working on innovations
in fields like robotics, AI, and software development.

Finance and Economics: Quantitative analysis in
banking, investment, and stock market predictions.

Cryptography: Developing secure communication
systems for cybersecurity.

Biostatistics: Applying mathematical models to study
biological or medical data.
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In the late 19th and early 20th centuries,mathematicians such as
William Thomson (LordKelvin) and James Clerk Maxwell began
studying knots from a mathematical perspective.Knot theory is a
captivating branch of mathematics that delves into the intricate
properties of knots and links in three-dimensional space. By
examining the topological characteristics of these knots,
mathematicians can uncover profound insights into the
fundamental nature of space and matter. The study of knots has
far-reaching implications,influencing fields such as physics,
biology, computerscience, and materials science. From
understanding the behavior of subatomic particles to analyzing the
structure of DNA, knot theory provides a unique lens through
which to explore the complexities of our universe.

AN UNKNOT

--by Writam Bhattacharya
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BASIC KNOTS
1. Trivial Knot (Unknot): A knot
with no crossings.
2. Trefoil Knot: A knot with three
crossings, and the simplest non-
trivial knot.
3. Figure-Eight Knot: A knot with
four crossings, and the second-
simplest non-trivial knot.

TORUS KNOTS
1. Torus Knot: A knot that can
beembedded on the surface of a
torus (doughnut-shaped surface).
2. (2,3)-Torus Knot: A torus knot
with two twists and three turns.

SATELLITE KNOTS
1. Satellite Knot: A knot that
contains another knot as a
connected sum.
2. Connect Sum: A knot formed by
joining two knots together.
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HYPERBOLIC KNOTS

1. Hyperbolic Knot: A knot that has a hyperbolic
structure.
2. Figure-Eight Knot (Hyperbolic): The figure-eight
knot is a hyperbolic knot.

A knot is called prime if it can not be represented
as a connected sum of two knots such that both of
these are knotted. Any knot which is not prime is
called composite.

INVARIANTS
In knot theory, an invariant is a property or
quantity that remains unchanged underdifferent
representations or transformations of a knot. In
other words, an invariant is a characteristic of a
knot that does not depend on how the knot is
drawn or manipulated.

COMPOSITE KNOT
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CONTRIBUTIONS OFCONTRIBUTIONS OF
MATHEMATICIANS IN KNOTMATHEMATICIANS IN KNOT

THEORYTHEORY
1. Carl Friedrich Gauss (1777-1855): Gauss is considered
one of the founders of knot theory. He studied the
properties of knots and introduced the concept of the
"linking number".
2. William Thomson (Lord Kelvin) (1824-1907)proposed
the "Vortex Theory" of atoms, which led to the study of
knots and links in physics.
3. James Clerk Maxwell (1831-1879) developed the
concept of "topological invariants" to study the
properties of knots and links.
4. Henri Poincaré (1854-1912) introduced the concept of
"homotopy" to study the properties of knots and links.
5. Emmy Noether (1882-1935) developed the "Noether's
Theorem" which has implications for knot theory and
its connections to physics.
6. James Waddell Alexander (1888-1971): Alexander
introduced the Alexander polynomial, a fundamental
invariant in knot theory.
7. Emmy Noether (1882-1935): Noether's work on
abstract algebra laid the foundation for the study of
knot groups and other algebraic invariants.
8. Kurt Reidemeister (1893-1971): Reidemeister
introduced the Reidemeister moves, which are used to
classify knots and links.
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Applications of Knot Theory

1. Physics: Knot theory has applications in quantum
field theory, string theory, and condensed matter
physics.
2. Biology: Knot theory has applications in the study
of DNA topology and protein structure.
3. Computer Science: Knot theory has applications in
computer graphics, robotics, and network topology.

CONCLUSION

Knot theory is a rich and fascinating field that has
evolved significantly over the centuries. From its
humble beginnings in topology and geometry to its
modern applications in physics,biology, and
computer science, knot theory has proven to be a
versatile and powerful tool forunder standing
complex systems.
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IMAGE RECONSTRUCTION USING NONSMOOTH CONVEX
OPTIMIZATION

Arghya Sinha

1. INTRODUCTION

Image reconstruction is the process of creating or im-
proving an image when the original data is incomplete,
blurry, or damaged. This is applicable in various fields,
such as:

• Medical imaging: Creating clear 3D images of
the human body, such as CT or MRI scans, from
raw measurement data.

• Astronomy: Enhancing images of stars and pla-
nets captured through telescopes by reducing noise
and distortions.

• Everyday applications: Fixing blurry photos or
sharpening low-resolution images.

The goal of image reconstruction is to take messy or
incomplete data and turn it into a clear, accurate image.
This process often involves two key steps:

1. Matching the data: Ensuring the reconstructed
image aligns with the measured or observed data.

2. Using prior knowledge: Applying assumptions
about the image, such as smoothness, sharp edges,
or patterns common to similar images.

As a first step, we consider the following model where
we want to recover an unknown image ξ ∈ Rn from
linear measurements

b = Aξ + η, (1)

where A ∈ Rm×n is the forward operator, b ∈ Rm is the
observed image, and η ∈ Rm is white Gaussian noise.
The forward operator varies depending on the application

A. Sinha is affiliated with Department of Computational
and Data Sciences, Indian Institute of Science, Bangalore,
Karnataka, India, 560012

and is typically assumed to be known in advance. For
instance, when attempting to deblur an image blurred
due to poor focus, a Gaussian blur linear operator can be
used as the forward operator. The question is: how can
we recover ξ if A and b are already known? The answer
is that, in most cases, exact recovery of ξ is not possible.
Instead, we aim to find an approximate reconstruction,
whose quality depends on the method used.

(a) Forward Opera-
tor (A)

(b) Clear Image (ξ) (c) Observed (b)

Fig. 1: An example of a forward operator and the observed
image. The first figure on the left shows a blur operator applied
to a single white pixel. The image on the right is the observed
blurry image, which is the result of applying the forward ope-
rator to the original clear image.

2. SMOOTH OPTIMIZATION

The process of image reconstruction can be approached
by solving an optimization problem where a reconstruc-
tion x is obtained by minimizing a well-defined loss
function. A common choice for such a loss function is
f(x) = 1

2∥Ax− b∥22, which measures the discrepancy
between the observed data b and the reconstructed image
Ax. Formally, this leads to the following optimization
problem:

min
x∈Rn

f(x). (2)

This particular formulation is advantageous due to
the smooth and convex nature of the objective function
f(x). These mathematical properties enable the use of
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efficient optimization techniques, such as the gradient
descent method [1], to solve (2). Gradient descent is an
iterative algorithm that updates the current estimate xk

using the gradient of f . Specifically, starting from an
initial estimate x0, the iterations are given by:

xk+1 = xk − γ∇f(xk), (3)

where γ > 0 is the step size (learning rate), and ∇f(x)
denotes the gradient of the loss function.

The convexity of f guarantees convergence of the
sequence {xk} to the global minimum, provided the step
size γ is chosen appropriately. This makes gradient de-
scent a reliable and widely used method in optimization
problems of this kind.

However, in practical scenarios, the problem in (2) is
often ill-conditioned, which can lead to numerical insta-
bilities or solutions that are not meaningful in the context
of image reconstruction. To solve such issues, we apply
a regularizer term with the loss function. Incorporating
a regularizer transforms the problem into a more robust
formulation, allowing the optimization process to bet-
ter handle challenges associated with noise, incomplete
data, or poorly conditioned systems. Various regulari-
zation techniques, such as Tikhonov regularization or
sparsity-promoting norms, have proven effective in im-
proving reconstruction outcomes and are widely explored
in image processing and optimization.

3. REGULARIZERS FOR IMAGE
RECONSTRUCTION

We now discuss three commonly used regularizers: Tik-
honov regularization, Lasso, and Total Variation (TV).

3.1. Tikhonov Regularization

Tikhonov regularization, also known as ridge regulari-
zation, penalizes the ℓ2-norm of the solution to enforce
smoothness and reduce sensitivity to noise. The regulari-
zed optimization problem is formulated as:

min
x∈Rn

{
f(x) + λ∥x∥22

}
, (4)

where f(x) is the loss function, λ > 0 is the regulari-
zation parameter, and ∥x∥22 =

∑n
i=1 x

2
i is the squared

ℓ2-norm. The parameter λ controls the trade-off between
fidelity to the data and smoothness of the solution. Tik-
honov regularization is particularly effective when the
desired solution is expected to be smooth or when dealing
with noisy measurements.

3.2. Lasso Regularization

Lasso regularization promotes sparsity in the solution by
penalizing the ℓ1-norm. The corresponding optimization
problem is:

min
x∈Rn

{f(x) + λ∥x∥1} , (5)

where ∥x∥1 =
∑n

i=1 |xi| is the ℓ1-norm. Lasso is particu-
larly useful in applications where the solution is expected
to be sparse, meaning that many elements of x are zero or
near-zero. This makes Lasso widely used in compressed
sensing and feature selection tasks.

3.3. Total Variation (TV) Regularization

Total Variation (TV) regularization is designed to preser-
ve edges in the reconstructed image by penalizing the
total variation of the solution. The TV norm is defined
as:

∥x∥TV =

n−1∑
i=1

|xi − xi+1|, (6)

The regularized optimization problem is:

min
x∈Rn

{f(x) + λ∥x∥TV} . (7)

TV regularization is particularly effective in preserving
sharp edges and piecewise-smooth structures, making it a
popular choice in image denoising and deblurring tasks.

3.4. Choosing the Regularizer

The choice of regularizer depends on the characteristics
of the problem and the prior information available about
the solution. For example, Tikhonov regularization is
suitable for smooth solutions, Lasso is ideal for sparse
solutions, and TV is preferred when preserving edges
is critical. The regularization parameter λ must also be
carefully tuned to achieve a balance between data fidelity
and the imposed regularization constraint. Other than
these classical options, there are other modern denoiser
based regularizations that work well in practice [2] by
incorporating prior knowledge into the reconstruction.

4. PROXIMAL GRADIENT METHOD FOR
REGULARIZED OPTIMIZATION

The optimization problems involving regularization can
be expressed as:

min
x∈Rn

{f(x) + g(x)} , (8)
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(a) Clear Image (b) Blurry Image (c) Reconstruction

Fig. 2: Reconstruction of a blurry image using TV regularizer in (7)

where f(x) is a smooth, differentiable function with
a Lipschitz-continuous gradient, and g(x) is a convex
function that acts as the regularizer, which may be non-
smooth. As highlighted in the previous section, while the
Tikhonov regularizer is smooth, other regularizers such as
Lasso or Total Variation (TV) are inherently non-smooth.
This non-smoothness prevents the direct application of
gradient descent to solve (8). Instead, a more versatile
approach known as the Proximal Gradient Method is
employed. This method combines gradient descent for
the smooth term f(x) with a proximal operator for the
non-smooth term g(x).

4.1. Proximal Operator

The proximal operator of a convex function g(x) is defi-
ned as:

proxλg(z) = arg min
x∈Rn

{
1

2
∥x− z∥22 + λg(x)

}
, (9)

where λ > 0 is a step size or regularization parameter.
Intuitively, the proximal operator computes a point x that
balances proximity to z and the regularization imposed
by g(x).

4.2. Proximal Gradient Iterations

The proximal gradient method performs the following
iterative updates:

xk+1 = proxγg (xk − γ∇f(xk)) , (10)

where γ > 0 is the step size. Here, the gradient descent
step xk − γ∇f(xk) minimizes the smooth term f(x),
while the proximal operator proxγg enforces the regulari-
zation defined by g(x).

4.3. Applications to Regularizers

The regularizers often has a closed form solution for
the proximal operator. This makes Proximal-Gradient
method very effecient.

• Tikhonov Regularization: For g(x) = 1
2∥x∥

2
2,

the proximal operator simplifies to a scaled identi-
ty mapping:

proxλg(z) =
z

1 + λ
. (11)

• Lasso Regularization: For g(x) = ∥x∥1, the pro-
ximal operator corresponds to the soft-thresholding
operator:

proxλg(z)i = sign(zi)max{|zi| − λ, 0}, ∀i.
(12)
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• Total Variation (TV) Regularization: For g(x) =
∥x∥TV, the proximal operator requires solving a
more complex subproblem. Efficient algorithms,
such as those proposed in [3], are often employed
for this purpose.

4.4. Convergence and Benefits

The proximal gradient method is guaranteed to converge
to a global minimum under mild conditions, such as
convexity of f(x) and g(x) and appropriate choice of
the step size γ. This method is particularly attractive
for large-scale problems because it exploits the structure
of f(x) and g(x), allowing for efficient computations.
Additionally, the proximal gradient method can handle a
wide variety of regularizers, making it a versatile tool for
solving regularized optimization problems.
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We know that, the real line ℝ with the usual addition forms a commutative group. The aim of 
this short write up is to categorize any subgroup of the group (ℝ, +) with the help of the usual 
topological structure of (ℝ, +).  

Let us first state some simple definitions and facts: 

Topological Group: A group (𝐺,⋅) with a topology 𝜏 on 𝐺 is called topological group if the two 
group operations 𝑀: 𝐺 × 𝐺 → 𝐺 defined by 𝑀(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 and 𝑖: 𝐺 → 𝐺 defined by 𝑖(𝑥) = 𝑥−1 
are continuous or equivalently the map (𝑥, 𝑦) → 𝑥 ⋅ 𝑦−1 is continuous. 

Fact 1: For any topological group (𝐺,⋅, 𝜏) (or simply 𝐺 for the sake of simplicity) and 𝑔 ∈ 𝐺, left 
translation 𝐿𝑔: 𝐺 → 𝐺, defined by 𝐿𝑔(𝑥) = 𝑔 ⋅ 𝑥 is a homeomorphism. Right translation 𝑅𝑔: 𝐺 →

𝐺 defined by, 𝑅𝑔(𝑥) = 𝑥 ⋅ 𝑔 is also a homeomorphism of G. 

Fact 2: The inversion 𝑖: 𝐺 → 𝐺 defined by 𝑖(𝑥) = 𝑥−1 is a homeomorphism of 𝐺. 

Examples: Clearly (ℝ, +), (ℤ, +), (ℚ, +), (ℝ\{0},⋅), (ℝ𝑛, +) are all topological groups. Any group 
equipped with the discrete topology is a topological group. 

(N.B.: A reader, who does not accustomed with the notion of arbitrary topological space so far, 
can simply think of the point set topology of the real line and group operation as the usual 
addition, homeomorphism as continuous bijection with continuous inverse (or simply a map that 
preserves the topological properties) to understand the topic and can proceed to the next 
theorem.) 

Theorem: Any subgroup of (ℝ, +) with usual topology is either dense in ℝ or cyclic. 

Proof: Let 𝐻 be a subgroup of the additive group ℝ. If, 𝐻 is cyclic, then there is nothing to prove. 
Let, 𝐻 is non cyclic subgroup of ℝ. 
Let, if possible, 𝐻 be not dense in ℝ.  

Then, there exists an interval (𝑎, 𝑏) ⊂ ℝ such that ℝ ∩ (𝑎, 𝑏) = ∅. Let 𝜖 =
𝑏−𝑎

2
. Then clearly, 0 ∈

(−𝜖, 𝜖) ∩ 𝐻. Now, if, 𝑡 ∈ (−𝜖, 𝜖) ∩ 𝐻\{0}, then |𝑡| ∈ 𝐻 (since, 𝑡 > 0 ⇒ |𝑡| = 𝑡 ∈ 𝐻 and 𝑡 < 0 ⇒
|𝑡| = −𝑡 ∈ 𝐻, 𝐻 being a subgroup) and by Archimedean property of real line if 𝑛 is the largest 

integer for which 𝑛|𝑡| ≤ 𝑎, then 𝑎 < (𝑛 + 1)|𝑡| < 𝑎 +
𝑏−𝑎

2
< 𝑏, a contradiction to the fact that 

𝐻 ∩ (𝑎, 𝑏) = ∅, since 𝐻 being a subgroup, contains (𝑛 + 1)|𝑡|. 
Now, 𝐻 being non trivial (since it is non cyclic), let 𝑥(> 𝜖) ∈ 𝐻.  Now, let 𝒜 ≔ {(𝑖𝜖, (𝑖 + 2)𝜖): 𝑖 ∈
ℝ+)}. Then 𝒜 is an open cover of the set [𝜖, 𝑥], and [𝜖, 𝑥] being compact, 𝒜 has a finite sub 
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cover. Also, each element of 𝒜 can contain at most one element of 𝐻 [since (−𝜖, 𝜖) ∩ 𝐻 = {0} 
and each interval in 𝒜 is nothing but translation of (−𝜖, 𝜖) 𝑏𝑦 (𝑖 + 1)𝜖]. Thus, we can say there 
exists a least positive element in 𝐻 say 𝑘. Now, for any ℎ ∈ 𝐻, there exist an integer 𝑚 (by 
Archimedean property of real numbers) such that, 𝑚𝑘 ≤ ℎ < (𝑚 + 1)𝑘 ⇒ 0 ≤ ℎ − 𝑚𝑘 < 𝑘. 
Since, ℎ, 𝑘 ∈ 𝐻, so, ℎ − 𝑚𝑘 ∈ 𝐻, which implies that ℎ − 𝑚𝑘 = 0 (since, k is the smallest positive 
integer in 𝐻). Hence, ℎ = 𝑚𝑘, for some 𝑚 ∈ ℤ. 
Thus, we have that 𝐻 =< 𝑘 > i.e; 𝐻 is a cyclic group, which contradicts our hypothesis. Thus, 𝐻 
must be dense in ℝ. (Proved). 

By the last theory, let us now make some observations below. 

Observation 1: (ℝ, +) can not contain any non-trivial subgroup of finite order. 

Proof: In fact, by the above theorem, if 𝐻 be finite subgroup in ℝ, then it is not dense and hence 
is cyclic. Let, 𝐻 =< 𝑝 >. Then, there is 𝑛 ∈ ℤ+, such that 𝑛𝑝 = 0, which implies 𝑝 = 0, i.e. 𝐻 =
{0},  that is, 𝐻 is trivial. 

Observation 2: Every proper subgroup of (ℝ, +) is either dense or closed in ℝ. 

Proof: Let, 𝐻 be a non dense subgroup of ℝ. Then, 𝐻 is cyclic infinite group and hence isomorphic 
to ℤ. Thus, 𝐻 = 𝑥ℤ, for some 𝑥 ∈ ℝ\{0}. Since, 𝜙: ℝ → 𝑥ℝ, defined by 𝜙(𝑎) = 𝑎 ⋅ 𝑥, is 
homeomorphism (since, 𝑥 ≠ 0), so, 𝑥ℤ = 𝜙(ℤ) is closed in ℝ, since so is ℤ in ℝ. 

Observation 3: Any closed proper subgroup of ℝ is endowed with discrete topology. 

Proof: Clearly, the proof follows from the above observation. 

Observation 4: For the additive group (ℂ, +) or(ℝ𝑛, +)(𝑛 ≥ 2), the theorem does not hold. 

Proof: In fact, taking (ℝ × {0}, +), or (ℝ𝑛−1 × {0}, +) serves our purpose. 

Before making any further observations let us prove a result: 

Lemma: If 𝐴 is compact and 𝐵 is closed subset in ℝ, then 𝐴 + 𝐵 ≔ {𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is closed 
subset of ℝ.  

Proof: Let (𝑥𝑛) be a sequence in 𝐴 + 𝐵 converging to 𝑥 in ℝ. We now show that, 𝑥 ∈ 𝐴 + 𝐵. 
Now, 𝑥𝑛 = 𝑎𝑛 + 𝑏𝑛 (say), where 𝑎𝑛 ∈ 𝐴, and 𝑏𝑛 ∈ 𝐵 for all 𝑛 ∈ ℕ. Now, 𝑥𝑛 − 𝑏𝑛 = 𝑎𝑛 is a 
sequence in the compact metric space 𝐴 and thus have a convergent subsequence, say, 
𝑎𝑟𝑛

converging to 𝑎 in 𝐴. Then, 𝑏𝑟𝑛
= 𝑥𝑟𝑛

− 𝑎𝑟𝑛
 is a convergent sequence converging to 𝑏 (say). 

Now, 𝐵 being closed, 𝑏 ∈ 𝐵. Hence, 𝑥 = 𝑎 + 𝑏 ∈ 𝐴 + 𝐵, i.e. 𝐴 + 𝐵 is closed in ℝ. 

The above lemma is also true for more general set up, i.e. for any topological group and can be 
proved very similarly using the concept of ‘Net’, in place of sequence. 

Observation 5: The above Lemma doesn’t hold if both 𝐴 and 𝐵 are closed. 
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Proof: In fact, taking ℤ and 𝛼ℤ, where 𝛼 is any irrational number, we get that, ℤ + 𝛼ℤ is a non 
cyclic subgroup of ℝ. Since, ℤ + 𝛼ℤ = 𝛽ℤ ⇒ 1 ∈ 𝛽ℤ and 𝛼 ∈ 𝛽ℤ. So, 1 = 𝛽𝑚 and 𝛼 = 𝛽𝑛, for 

some 𝑚, 𝑛 ∈ ℤ which implies 𝛼 =
𝑛

𝑚
, which contradicts that 𝛼 is irrational. Thus, ℤ + 𝛼ℤ being 

non cyclic subgroup of ℝ, is dense in ℝ.  Also, clearly ℤ + 𝛼ℤ is properly contained in ℝ and hence 
is not closed. 

N.B: By the above observation we can conclude for any irrational 𝛼 the subgroup ℤ + 𝛼ℤ of ℝ is 
dense in ℝ.  

Uncountable Proper Dense Subgroups of (ℝ, +): 

Let us conclude this small write up on the additive real group by giving some examples of 
uncountable dense proper subgroup of ℝ. 

Example 1: We know that the dimension of the vector space ℝ over ℚ is uncountable. So taking 
any uncountable subset of the basis and the if 𝐿 be the vector subspace generated by that basis, 
then (𝐿, +) is uncountable (and hence non cyclic i.e. dense) subgroup of (ℝ, +). 

Example 2: Let, 𝐻 = {𝑥: lim
𝑛→∞

sin(𝑛! 𝜋𝑥) = 0}. Then, clearly 𝐻 is a subgroup of ℝ under 

addition. Now, let 𝑆 = {∑
𝑎𝑖

𝑖!
∶ 𝑎𝑖 ∈ {0,1}}∞

𝑖=0 . Clearly, then 𝑆 is uncountable. Now, for any 𝑥 ∈ 𝑆, 

we can say 𝑛! 𝑥 = (𝑛! 𝑎0 +
𝑛!

1!
𝑎1 + ⋯ + 𝑎𝑛) + ∑

𝑎𝑖

𝑖(𝑖−1)…(𝑛+1)
 ∞

𝑖=(𝑛+1) = 𝐴𝑛 + 𝐵𝑛, where 𝐴𝑛 is an 

integer. Since, |𝐵𝑛| ≤
1

𝑛+1
+

1

(𝑛+1)2 +
1

(𝑛+1)3 + ⋯ =
1

𝑛
, so, we have that, lim

𝑛→∞
𝐵𝑛 = 0, since, so 

is lim
𝑛→∞

1

𝑛
.   𝑁𝑜𝑤, sin(𝐴𝑛𝜋 + 𝐵𝑛𝜋) = sin(𝐴𝑛𝜋) cos(𝐵𝑛𝜋) + sin(𝐵𝑛𝜋)𝑐𝑜s(𝐴𝑛𝜋)  

= 0 + sin(𝐵𝑛𝜋) cos (𝐴𝑛𝜋) 

Since, cos (𝐴𝑛𝜋) is bounded and sin is continuous, so we have, lim
𝑛→∞

sin(𝐴𝑛𝜋 + 𝐵𝑛𝜋) = 0 i.e. 

lim
𝑛→∞

sin(𝑛! 𝜋𝑥) = 0, for all 𝑥 ∈ 𝑆. Hence, we have 𝐻 is an uncountable subgroup of (ℝ, +). 
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A Brief Introduction to Central Simple Algebras
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In this article we will discuss some basic ideas about central simple algebras
over a field k. It is known that the set of all square matrices Mn(k) of order n
forms an algebra with respect to the matrix multiplication with identity as In.
This algebra has a center isomorphic to the field k(≃ k.In) and doesn’t contain
any two-sided ideal except {0} and itself. We will see these algebras are the
basic examples of central simple algebras. We will assume all the algebras here
are finite dimensional and contains 1. We refer to ([AM]) for some basics on
tensor products, ideals, rings and modules.

1 Introduction

Let k be any field and by an extension K/k we will mean a field containing k
as a subfield. If A is an algebra defined over k, we write AK for the K-algebra
obtained by extending the scalars to K, i.e, AK = A⊗K. We also define the
opposite algebra Aop by Aop = {aop : a ∈ A} with the operations defined as
follows:

aop +bop = (a+b)op, aopbop = (ba)op, α.aop = (α.a)op

for a,b ∈ A and α ∈ k.

Definition 1.1. A central simple algebra(CSA) over a field k is a finite dimen-
sional algebra A ̸= {0} with center k(= k.1) which has no proper two-sided
ideal except {0}. A central simple algebra A is called division algebra if every
non-zero element in A is invertible.

As we can see the above definition has been motivated by the algebras
Mn(k) which we mentioned earlier. But these are not division algebras as we
know all linear transformations defined on a vector space of dimension n are
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not invertible. Now we describe some properties of these algebras which help
us to check whether an algebra is CSA or not.

2 Properties of CSA

The structures of CSA’s are determined by the following well-known result due
to Wedderburn:

Theorem 2.1. For an algebra A over a field k the following conditions are
equivalent:

1. A is CSA.
2. There is a field K containing k such that AK ≃ Mn(K), for some n.
3. If K is an algebraically closed field containing k, AK ≃ Mn(K) for some

n.
4. There is a finite dimensional central division algebra D over k and an

integer r such that A ≃ Mr(D).
5. The canonical map A⊗k Aop → Endk(A) which associate to a⊗bop the

linear map x ↦→ axb is an isomorphism.

The fields for which condition (2) holds are called splitting fields of the
algebra A. A central simple algebra A is called split if it is isomorphic to a matrix
algebra Mn(k). For example, every CSA over the field of complex numbers
splits. One can check easily that the dimensions of the central simple algebras
are always of the form n2 for some n. dimk(A) = n2 if AK ≃ Mn(K) for some
extension K/k. The integer n is called the degree of the algebra A and denoted
by deg(A). The degree of the division algebra D in condition (4) is called the
index of A.

Definition 2.1. Let A and B be two finite dimensional CSA over k. They are
called Brauer-equivalent if Ml(A)≃ Mm(B) for some integers l and m.

We can see that every CSA is Brauer-equivalent to one and only one division
algebra. If we denote by Br(k) the set of all Brauer equivalence classes of CSA’s
over k then tensor product gives us a group structure on Br(k), called the Brauer
group of k. The unit element in this group is the class of k which represents the
class of matrix algebras over k. The inverse of the class of a CSA, A is the class
of Aop, which follows from condition (5) of theorem 2.1. An interesting fact
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about these algebras is their automorphisms which we will describe next. The
following result is due to Skolem and Noether:

Theorem 2.2. Let A be a CSA over k and ρ : A → A be an automorphism. Then
∃ a ∈ A which is invertible and ρ(b) = aba−1, for all b ∈ A.

The automorphisms of the above type are called inner-automorphisms.
So, every automorphism of a CSA is inner and from this we can identify all
automorphisms of the matrix algebras Mn(k) for any n.

3 Over Rings

Let R be a commutative ring with identity 1. Let A be an R-algebra which is
a faithfully projective module as well (see [AM]). Then we define A to be an
Azumaya Algebra if the canonical map A⊗R Aop → EndR(A) is an isomorphism
of R-algebras. As we can see this is a generalization of the concept of CSA
over a commutative ring R with identity. There are several similarities between
the properties of CSA over fields and Azumaya algebras over rings. There are
many structural differences as well between these two types of algebras. For a
comparative study of these two algebras we refer the reader to ([MJ], [PG]).
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